力学和对称性导论(第2版)txt,chm,pdf,epub,mobi下载 作者:[美] Jerrold E. Marsden/Tudor S. Ratiu 出版社: 世界图书出版公司 出版年: 2008-3 页数: 584 定价: 69.00元 装帧: 平装 ISBN: 9787506291828 内容简介 · · · · · ·《应用数学教材丛书·力学和对称性导论(第2版)》是Springer《应用数学教材丛书》第17卷(全英文版),系一部经典力学基本教程,对动力系统中的活跃分支——可积系统、混沌系统、在制系统、稳定性、分歧理论,以及特殊刚体、流体、等离子体和弹性系统的研究等近代理论及其应用作了详细介绍,内容系统丰富。 目录 · · · · · ·Preface1 Introduction and Overview 1.1 Lagrangian and Hamiltonian Formalisms 1.2 Tile Rigid Body 1.3 Lie-Poisson Brackets,Poisson Manifolds,Momentum Maps 1.4 The Heavy Top 1.5 Incompressible Fluids 1.6 The Maxwell-Vlasov System 1.7 Nonlinear Stability 1.8 Bifurcation 1.9 The Poincare-MelnikovMethod 1.10 Resonances,Geometric Phases,and Control2 Hamiltonian Systems on Linear Syrnplectic Spaces 2.1 Introduction 2.2 Symplectic Forms on Vector Spaces 2.3 Examples 2.4 Canonical Transformations or Symplectic Maps 2.5 The Abstract Hamilton Equations 2.6 The Classical Hamilton Equations 2.7 When Are Equations Hamiltonian? 2.8 Hamiltonian Flows 2.9 Poisson Brackets 2.10 A Particle in a Rotating Hoop 2.11 The Poincare-Melnikov Method and Chaos3 An Introduction to Infinite-Dimensional Systems 3.1 Lagrange'sandHamilton'sEquationsforFieldTheory 3.2 Examples:Hamilton's Equations 3.3 Examples:Poisson Brackets and Conserved Quantities4 Interlude:Manifolds,Vector Fields,Differential Forms5 Hamiltonian Systems on Symplectic Manifolds6 Cotangent Bundles7 Lagrangian Mechanics8 Variational Principles,Constraints,Rotating Systems9 An Introduction to Lie Groups10 Poisson Manifolds11 Momentum Maps12 Computation and Properties of Momentum Maps13 Euler-Poincare and Lie-Poisson Reduction14 Coadjoint Orbits15 The Free Rigid BodyReferencesIndexPreface1 Introduction and Overview 1.1 Lagrangian and Hamiltonian Formalisms 1.2 Tile Rigid Body 1.3 Lie-Poisson Brackets,Poisson Manifolds,Momentum Maps 1.4 The Heavy Top 1.5 Incompressible Fluids 1.6 The Maxwell-Vlasov System 1.7 Nonlinear Stability 1.8 Bifurcation 1.9 The Poincare-MelnikovMethod 1.10 Resonances,Geometric Phases,and Control2 Hamiltonian Systems on Linear Syrnplectic Spaces 2.1 Introduction 2.2 Symplectic Forms on Vector Spaces 2.3 Examples 2.4 Canonical Transformations or Symplectic Maps 2.5 The Abstract Hamilton Equations 2.6 The Classical Hamilton Equations 2.7 When Are Equations Hamiltonian? 2.8 Hamiltonian Flows 2.9 Poisson Brackets 2.10 A Particle in a Rotating Hoop 2.11 The Poincare-Melnikov Method and Chaos3 An Introduction to Infinite-Dimensional Systems 3.1 Lagrange'sandHamilton'sEquationsforFieldTheory 3.2 Examples:Hamilton's Equations 3.3 Examples:Poisson Brackets and Conserved Quantities4 Interlude:Manifolds,Vector Fields,Differential Forms5 Hamiltonian Systems on Symplectic Manifolds6 Cotangent Bundles7 Lagrangian Mechanics8 Variational Principles,Constraints,Rotating Systems9 An Introduction to Lie Groups10 Poisson Manifolds11 Momentum Maps12 Computation and Properties of Momentum Maps13 Euler-Poincare and Lie-Poisson Reduction14 Coadjoint Orbits15 The Free Rigid BodyReferencesIndex · · · · · · () |
朋友的介绍购买了
历史开始于人创造神,终结于人成为神
烧脑 经典
我骄傲