Data Miningtxt,chm,pdf,epub,mobi下载 作者:Ian H. Witten/Eibe Frank 出版社: Morgan Kaufmann 副标题: Practical Machine Learning Tools and Techniques, Second Edition 出版年: 2005-6-22 页数: 560 定价: USD 75.95 装帧: Paperback ISBN: 9780120884070
内容简介 · · · · · ·
As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can ex...
As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can extract useful information from raw data. This book describes these techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights for the new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; plus much more; algorithmic methods at the heart of successful data mining-including tried and true techniques as well as leading edge methods; performance improvement techniques that work by transforming the input or output; and, downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization-in a new, interactive interface.
作者简介 · · · · · ·
Jiawei Han(韩家炜),是伊利诺伊大学厄巴纳-尚佩恩分校计算机科学系的Bliss教授。他因知识发现和数据挖掘研究方面的贡献而获得许多奖励,包括ACM SIGKDD创新奖(2004)、IEEE计算机学会技术成就奖(2005)和IEEE W.Wallace McDowell奖(2009)。他是ACM和IEEE会士。他还担任《ACM Transactions on Knowledge Discovery from Data》的执行主编(2006—2011)和许多杂志的编委,包括《IEEE Transactions on Knowledge and Data Engineering》和《Data Mining Knowledge Discovery》。
一方面满足了自己的好奇心
文笔优美
本书需要耐心的仔细品看,因为有些内容还是满学术的。
最新力作,好看