《Time Series Analysis and Its Applications》电子书下载

Time Series Analysis and Its Applicationstxt,chm,pdf,epub,mobi下载
作者:Robert H. Shumway/David S. Stoffer
出版社: Springer
副标题: Third edition
出版年: 2010-11-1
页数: 610
定价: USD 99.00
装帧: Paperback
ISBN: 9781441978646

内容简介 · · · · · ·

Time Series Analysis and Its Applications presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using non-trivial data illustrate solutions to problems such as evaluating pain perception experiments using magnetic resonance imaging or monitoring a nuclear test ban treaty. The book is designed to be ...




目录 · · · · · ·

Contents
1 Characteristics of Time Series 1
1.1 Introduction 1
1.2 The Nature of Time Series Data 3
1.3 Time Series Statistical Models 11
1.4 Measures of Dependence: Autocorrelation and Cross-Correlation 17
· · · · · ·()
Contents
1 Characteristics of Time Series 1
1.1 Introduction 1
1.2 The Nature of Time Series Data 3
1.3 Time Series Statistical Models 11
1.4 Measures of Dependence: Autocorrelation and Cross-Correlation 17
1.5 Stationary Time Series 22
1.6 Estimation of Correlation 28
1.7 Vector-Valued and Multidimensional Series 33
2 Time Series Regression and Exploratory Data Analysis 47
2.1 Introduction 47
2.2 Classical Regression in the Time Series Context 48
2.3 Exploratory Data Analysis 57
2.4 Smoothing in the Time Series Context 70
3 ARIMA Models 83
3.1 Introduction 83
3.2 Autoregressive Moving Average Models 84
3.3 Difference Equations 97
3.4 Autocorrelation and Partial Autocorrelation 102
3.5 Forecasting 108
3.6 Estimation 121
3.7 Integrated Models for Nonstationary Data 141
3.8 Building ARIMA Models 144
3.9 Multiplicative Seasonal ARIMA Models 154
4 Spectral Analysis and Filtering 173
4.1 Introduction 173
4.2 Cyclical Behavior and Periodicity 175
4.3 The Spectral Density 180
4.4 Periodogram and Discrete Fourier Transform 187
4.5 Nonparametric Spectral Estimation 196
4.6 Parametric Spectral Estimation 212
4.7 Multiple Series and Cross-Spectra 216
4.8 Linear Filters 221
4.9 Dynamic Fourier Analysis and Wavelets 228
4.10 Lagged Regression Models 242
4.11 Signal Extraction and Optimum Filtering 247
4.12 Spectral Analysis of Multidimensional Series 252
5 Additional Time Domain Topics 267
5.1 Introduction 267
5.2 Long Memory ARMA and Fractional Differencing 267
5.3 Unit Root Testing 277
5.4 GARCH Models 280
5.5 Threshold Models 289
5.6 Regression with Autocorrelated Errors 293
5.7 Lagged Regression: Transfer Function Modeling 296
5.8 Multivariate ARMAX Models 301
6 State-Space Models 319
6.1 Introduction 319
6.2 Filtering, Smoothing, and Forecasting 325
6.3 Maximum Likelihood Estimation 335
6.4 Missing Data Modifications 344
6.5 Structural Models: Signal Extraction and Forecasting 350
6.6 State-Space Models with Correlated Errors 354
6.6.1 ARMAX Models 355
6.6.2 Multivariate Regression with Autocorrelated Errors 356
6.7 Bootstrapping State-Space Models 359
6.8 Dynamic Linear Models with Switching 365
6.9 Stochastic Volatility 378
6.10 Nonlinear and Non-normal State-Space Models Using Monte Carlo Methods 387
7 Statistical Methods in the Frequency Domain 405
7.1 Introduction 405
7.2 Spectral Matrices and Likelihood Functions 409
7.3 Regression for Jointly Stationary Series 410
7.4 Regression with Deterministic Inputs 420
7.5 Random Coefficient Regression 429
7.6 Analysis of Designed Experiments 434
7.7 Discrimination and Cluster Analysis 450
7.8 Principal Components and Factor Analysis 468
7.9 The Spectral Envelope 485
Appendix A: Large Sample Theory 507
A.1 Convergence Modes 507
A.2 Central Limit Theorems 515
A.3 The Mean and Autocorrelation Functions 518
Appendix B: Time Domain Theory 527
B.1 Hilbert Spaces and the Projection Theorem 527
B.2 Causal Conditions for ARMA Models 531
B.3 Large Sample Distribution of the AR(p) Conditional Least Squares Estimators 533
B.4 The Wold Decomposition 537
Appendix C: Spectral Domain Theory 539
C.1 Spectral Representation Theorem 539
C.2 Large Sample Distribution of the DFT and Smoothed Periodogram 543
C.3 The Complex Multivariate Normal Distribution 554
Appendix R: R Supplement 559
R.1 First Things First 559
R.1.1 Included Data Sets 560
R.1.2 Included Scripts 562
R.2 Getting Started 567
R.3 Time Series Primer 571
· · · · · · ()

下载地址

发布者:起点无限极

文件说明:zip / 解压密码:wezp.com

迅雷下载:您需要先后,才能查看

网盘下载:您需要先后,才能查看

关于内容:内容自于互联网,如果发现有违规内容请联系管理员删除!

作者: 起点无限极

起点无限极

该用户很懒,还没有介绍自己。

97 条评论

发表评论

  1. 马丁梳羽马丁梳羽说道:
    1#

    非常值得一看的好书

  2. 陈很怪陈很怪说道:
    2#

    很独特的视角

  3. 懿切瀡缘SJ懿切瀡缘SJ说道:
    3#

    这本书真的还是很有参考价值的。

  4. 凯少与我凯少与我说道:
    4#

    又买了一次

  5. 显示更多